Spin doping using transition metal phthalocyanine molecules
نویسندگان
چکیده
Molecular spins have become key enablers for exploring magnetic interactions, quantum information processes and many-body effects in metals. Metal-organic molecules, in particular, let the spin state of the core metal ion to be modified according to its organic environment, allowing localized magnetic moments to emerge as functional entities with radically different properties from its simple atomic counterparts. Here, using and preserving the integrity of transition metal phthalocyanine high-spin complexes, we demonstrate the magnetic doping of gold thin films, effectively creating a new ground state. We demonstrate it by electrical transport measurements that are sensitive to the scattering of itinerant electrons with magnetic impurities, such as Kondo effect and weak antilocalization. Our work expands in a simple and powerful way the classes of materials that can be used as magnetic dopants, opening a new channel to couple the wide range of molecular properties with spin phenomena at a functional scale.
منابع مشابه
Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines.
Chemical doping offers promise as a means of tailoring the electrical characteristics of organic molecular compounds. However, unlike for inorganic semiconductors used in electronics applications, controlling the influence of dopants in molecular complexes is complicated by the presence of multiple doping sites, electron acceptor levels, and intramolecular correlation effects. Here we use scann...
متن کاملSpin transport properties of 3d transition metal(II) phthalocyanines in contact with single-walled carbon nanotube electrodes.
The spin transport properties of a series of 3d transition metal(ii) phthalocyanines (MPc, M = Mn, Fe, Co, Ni, Cu and Zn) sandwiched between two semi-infinite armchair single-walled carbon nanotube electrodes are investigated by using a self-consistent ab initio approach that combines the non-equilibrium Green's function formalism with spin density functional theory. Our calculations show that ...
متن کاملElectronic Structures, and Optical and Magnetic Properties of Quadruple-Decker Phthalocyanines
For applications of magnetic devices with operating nuclear-spin-based quantum bits in quantum computing, electronic structures, and magnetic and optical properties of quadruple-decker phthalocyanines with 3d transition metals, such as scandium, yttrium, and lanthanum atoms (M3Pc4: M = Sc, Y, and La), were studied by quantum calculation using density function theory. Electron density distributi...
متن کاملGiant magnetocrystalline anisotropy of 5d transition metal-based phthalocyanine sheet.
Large magnetocrystalline anisotropy energy (MAE) is a critical requirement for nanomagnets for applications in magnetic memory and storage devices. Due to small spin-orbit interaction the MAE of ferromagnetic films or single molecule magnets based on 3d metals is small and in typical magnetic nanostructures it is of the order of 2-3 meV. We show that MAE as high as 140 meV can be achieved by ap...
متن کاملPre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets.
Transition metal (TM) embedded two-dimensional phthalocyanine (Pc) sheets have been recently synthesized in experiments [M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc. 133, 1203 (2010)], where the transition metal ions are uniformly distributed in porous structures, providing the possibility of capturing gas molecules. Using first principles and grand canonical Mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016